
Boosted Decision Trees for Machine Learning

Andrew Carnes

September 13, 2018

1

Contents

1 Introduction 3

2 Boosted Decision Trees 3
2.1 A Single Decision Tree . 3
2.2 Building a Single Decision Tree: an Example 4
2.3 The Decision Tree Algorithm . 6
2.4 Boosting . 8
2.5 The BDT Algorithm . 9
2.6 Some Loss Functions . 10

2.6.1 LossFunctionBDT . 10
2.6.2 LeastSquaresLossFunctionBDT . 11
2.6.3 AbsoluteDeviationLossFunctionBDT 11
2.6.4 HuberLossFunctionBDT . 12

3 Conclusion 13

2

1 Introduction

This document outlines the Boosted Decision Tree (BDT) machine learning algorithm. The
text starts with a cursory summary of the full BDT algorithm. After presenting the big
picture, the text starts by explaining the decision tree algorithm. After discussing the DT
algorithm, the notes move through a concrete example step by step and then provide pseu-
docode for the DT algorithm. The document then moves on to explain boosting and later
presents pseudocode for the full BDT algorithm. This text was originally written as part of
a larger document for a project during my PhD at the Large Hadron Collider. I extracted
the relevant BDT info and put it into this document in case people might find it useful.

2 Boosted Decision Trees

Let’s get to it. The BDT algorithm is a supervised machine learning algorithm: it learns
from a set of data with known answers in order to predict data with unknown answers. The
algorithm creates a forest, which is a collection of trees. The forest starts with a single
tree, which chops up the feature space into discrete regions, fitting constants in each as to
minimize the total error between between the true values and the predicted values of the
tree. The function defining the net error is called the loss function. If the predictions by
the tree are general enough, the events (data points) will be off by some amount, i.e. the
predicted values will differ from the true values. Since the events are still off, the algorithm
will add another tree attempting to correct the predictions of the last tree to further reduce
the error. The algorithm will continue to add trees further correcting the predictions and
minimizing the error until it reaches the maximum number of trees, a hyperparmeter set by
the user.

2.1 A Single Decision Tree

The decision tree needs to decide how to partition the space such that it is computationally
efficient and reduces the error defined by the loss function, L(z, ẑ), where z is the vector of
true values for all data points in the data set and ẑ is the vector of predicted values. Usually
L(z, ẑ) looks something like

L(z, ẑ) =
∑
j

l(zj, ẑj) (1)

where l(zj, ẑj) denotes the loss (aka error) for a single data point with true value zj and
predicted value ẑj. To meet the efficiency demand, the tree building algorithm takes a greedy
approach, recursively dividng the regions into two until the maximum number of terminal
nodes, a hyperparameter determined by the user, is reached. The maximum number of
terminal nodes corresponds to the number of predictive regions in feature space.

The algorithm goes as follows. First fit the entire feature space with the constant that
minimizes the loss function in the entire space. Then for each feature, search for the best
division among a set of candidate split values belonging to that feature. For each candidate
value, propose a cut in the form of a hyperplane through a value of that feature, dividing

3

the space into two candidate regions. Then fit the two candidate regions with the constants
that minimize the loss in the respective regions.

d

dcR
L(z, ẑ = cR) = 0 | z, ẑ ∈ R (2)

The loss before the subdivision, Lbefore = L(z, ẑbefore), is compared to the loss after the
subdivision, Lafter = L(z, ẑafter), and the error reduction is calculated like so, −(Lafter −
Lbefore), which is a positive number since Lafter has a smaller error than Lbefore. Call Ri the
region to split and Ri,1 and Ri,2 the resulting regions after the proposed split. Again using
l(zj, ẑj) to denote the loss for a single data point with true value zj and predicted value ẑj,
the error reduction may be written

Error Reduction =
∑
j∈Ri

l(zj, ci)−
∑

j∈Ri,1

l(zj, ci,1)−
∑

j∈Ri,2

l(zj, ci,2). (3)

The cut with the largest error reduction of those searched is the best cut for the feature.
The algorithm checks the other features in the same manner, reporting the best cut and error
reduction for each. The cut chosen for the region is the cut with the largest error reduction
of all the features. Now the feature space is divided into two regions, each with constant
fits. The algorithm then repeats the same process in each subregion, figuring out the best
cut and constants for each, eventually splitting the region that provides the maximum gain
in error reduction. This process continues, each time splitting the subspace that yields the
best return, until the number of regions equals the maximum number of terminal nodes set
by the user.

2.2 Building a Single Decision Tree: an Example

Here is an example of the tree building algorithm using Least Squares as the loss function.
Consider a case with N events where each event has two features x and y, and each event is
uniquely labeled by the subscript i. The maximum number of terminal nodes in this example
is 3.

Least Squares ≡ 1

2

N∑
i=1

[zi − ẑi]2 (4)

d

dcR

1

2

N∑
i=1

[zi − cR]2 = 0→ cR =
1

N

N∑
i=1

zi (5)

Take a look at the the top left of Figure 1. The events for the example were generated
such that those with x>0.5 have a true value z=10, those with x<0.5 and y>0.5 have z=-8,
and those with x<0.5 and y<0.5 have z=-12. The colored regions represent the true values of
the underlying true distribution and the crosses represent the generated events themselves.
In the end the tree with three terminal nodes should model these generated regions, correctly
predicting the events. In the next three pictures in Figure 1 the colors of the crosses still
represent the true values, but the colored regions represent the fits in the decision tree regions
at each iteration.

4

Figure 1: The stages of creation for a single decision tree with three terminal nodes.

Equation 3 determines that the constant fit in a region should be the mean of the true
values in the region. So in iteration 1 the tree fits all of the events with the mean, 1.4. Then
in iteration 2 the tree searches along x and y calculating the error reduction for each possible
cut along each feature. The cut with the maximum error reduction turns out to be x=0.535.
The left region is fit with its mean, -9.84 and the right region with its mean, 10. The tree
then searches in both subspaces along x and y for the best split in each space, choosing to
split the region with the most gain. The algorithm finds the maximum error reduction in
the left region with a cut at y=0.5, fitting the top with -8 and the bottom with -12. At the
end of iteration 3 there are three terminal nodes and the algorithm stops building the tree.
The tree has correctly modeled the underlying distribution of the true values.

Notice that the fit for an event is a given by a series of binary decisions, and that the
entire model is given by a tree of binary decisions, hence the name. The tree structure is
illustrated for the previous example in Figure 2.

5

Figure 2: The decision tree model gets its name from the fact that it can be viewed as a tree of
binary decisions.

2.3 The Decision Tree Algorithm

Now that the basic concepts behind the decision tree have been covered, the decision tree
algorithm is outlined in pseudocode.

node | tree

bestSplitValue | rootNode

bestSplitFeature | terminalNodes

bestErrorReduction | trainingEvents

fitValue | loss_function

| nodeLimit

mother |

leftDaughter |

rightDaughter |

|

loss_function |

node::fitAndCalcOptimumSplit(loss_function)

Calculate the best split value, split feature, and error reduction

for the node

bestSplitValue = 0

bestSplitFeature = -1

bestErrorReduction = -1

get the constant fit value in this region aka subspace aka node

6

based upon the constant that minimizes the loss function

fitValue = loss_function.fit_constant(events)

calculate the error reduction for each feature

and for a set of points along that feature

store the information for the best one

for(f in features)

for(splitPoint in f)

errorReduction = loss_function.calculateErrorReduction(events, splitPoint, f)

if(errorReduction > bestErrorReduction)

bestErrorReduction = errorReduction

bestSplitFeature = f

bestSplitValue = splitPoint

tree::buildTree()

build a tree up to the given node limit

set up the root node for the tree

rootNode = new node

rootNode.events = trainingEvents

terminalNodes.add(rootNode)

keep track of the node with the best error reduction

during the loop through the nodes

bestNodeErrorReduction = -1

nodeToSplit = 0

set fit value and figure out the best split

feature, split value, and best error reduction

for the root node

if(terminalNodes.size() == 1)

rootNode.fitAndCalcOptimumSplit(loss_function)

All terminal nodes have best split info available

see which one is the best one to split

for(node in terminalNodes)

if(node.bestErrorReduction < bestNodeErrorReduction)

bestNodeErrorReduction = node.bestErrorReduction

nodeToSplit = node

found best terminal node aka subspace to split

link mother and daughter nodes

left = new node

right = new node

nodeToSplit.leftDaughter = left

7

nodeToSplit.rightDaughter = right

left.mother = nodeToSplit

right.mother = nodeToSplit

filter the events appropriately from the mother space into the subspaces

for(event in nodeToSplit.events)

if(event.feature[nodeToSplit.bestSplitFeature] < nodeToSplit.bestSplitValue)

left.events.append(event)

else

right.events.append(event)

calculate the best split info for the new nodes

also figure out the constant fits for each region

left.fitAndCalcOptimumSplit(loss_function)

right.fitAndCalcOptimumSplit(loss_function)

nodeToSplit has been divided into subspaces

it is no longer a terminal node, but the daughters are

terminalNodes.remove(nodeToSplit)

terminalNodes.add(left)

terminalNodes.add(right)

continue greedily dividing until nodeLimit is reached

if(terminalNodes.size() < nodeLimit) buildTree()

2.4 Boosting

Boosting involves iteratively adding trees to create a forest. Each subseuqent tree corrects
the predictions of the earlier trees.

Forest(~x) = T0(~x) + T1(~x) + ...+ Tn(~x) (6)

Now T0 is the initial fit and fits the true values as well as possible. Then, T1 is created
such that it corrects the predictions of T0. After, T2 corrects T0 + T1, and in general the
nth tree, Tn, corrects the predictions given by the previous n trees. This is analogous to
perturbation theory in physics. The values the nth tree should model at each iteration are
given by dẑn such that this correction heads in the direction of the minimum at that stage.
This implies that dẑn should be in the same direction as the negative of the gradient, and
that the nth corrective term to the forest, Tn, should model dẑn up to some constant.

− d

dẑn−1(xi)
L(zi, ẑin−1 = T0(x

i) + ...+ Tn−1(x
i))→ dẑin (7)

In this way, the nth tree is an additive correction fit to the desired corrections, dẑin. In
other words, the tree chooses the appropriate splits and constants using the dẑin’s as the

8

true values. Because computationally efficient methods exist for building a tree with Least
Squares, most implementations fit fit the nth targets for the specific loss function using Least
Squares rather than the loss function itself. Fitting the appropriate corrections guarantees
that the algorithm heads downhill, but further steps can be taken to reach a more minimum
value. After the tree has modeled the gradient by forming the regions in feature spaceand
fitting them with constants, the constants in those regions can be recalculated as to best
minimize the loss function within each region.

d

dcn,R
L(z, ẑ = T0 + T1 + ...+ Tn−1 + cn,R) = 0→ cn,R (8)

If the user wishes to head downhill slower or quicker the user can supply a learning rate
value, which scales each tree’s predictions by a constant. If the learning rate were 0.3 then
the constant fits in each of the terminal regions would be scaled by 0.3 for every tree. Trees
are added until the number of trees in the forest reaches the maximum number of trees
specified by the user as a hyperparameter.

2.5 The BDT Algorithm

Now that the concepts behind the decision tree and boosting have been covered, the BDT
algorithm is outlined in pseudocode.

forest

trainingEvents

trees

loss_function

nodeLimit

treeLimit

learningRate

forest::buildForest()

while(trees.size() < treeLimit)

head downhill by setting the targets for the tree

the target is the gradient for the loss function

covered earlier, each tree fits the targets as if

they were the true values

for(event in trainingEvents)

loss_function.set_target(event)

build the tree

the tree usually uses least_squares to fit the targets

since it’s efficient

tree = new tree

9

trees.add(tree)

tree.buildTree(nodeLimit)

Now recalculate the best fits in the terminal regions

for(tnode in tree.terminalNodes)

constant that minimizes the loss function in the region

tnode.fitValue = loss_function.fit_constant(tnode.events)

scale by learningRate, hyperparameter set by user

tnode.fitValue*=learningRate

update the predictedValue now that the event has

been fit by a new tree

for(event in tnode.events)

event.predictedValue+=tnode.fitValue

2.6 Some Loss Functions

Different loss functions create different trees depending upon the events the loss function
focuses on. Having different options for the loss functions allows the user to focus on the
events they care about and predict those more accurately. Least Squares, Huber, and Ab-
solute Deviation are some common options for regression. I may add cross entropy to cover
(multi)classification, but the writeup I extracted this text from was written for a regression
project, so that’s not covered at the moment.

Anyways, let’s cover the implemention and functionality of some common error metrics.
Relative to Least Squares, Huber focuses on the core of the residuals, those events with small
|z − ẑ| values, while comparatively discounting events with large |z − ẑ| values. Absolute
deviation focuses even more than Huber on the events in the core, small |z − ẑ|. Depending
on their goals, the user may want to focus on the hard to predict events and reign them in
or they may want to ignore very difficult events in favor of more accurate predictions for the
easier events.

2.6.1 LossFunctionBDT

LossFunctionBDT is the interface. All of the methods require implementation when inher-
ited. The fit is the constant that minimizes the loss function for the events in the node.
The target is the target for the upcoming tree in the forest to model – usually some kind of
residual. The target is the negative gradient of the loss function with respect to the predicted
value for an event. Init must initialize the parameters for the loss function if they exist and
provide the events with an initial fit.

class LossFunctionBDT

virtual Init(events) # initialize the loss function

10

virtual SetTargets(events) # set targets for events

virtual Target(event) # set target for one event

virtual Fit(events) # set fit for events in a node

2.6.2 LeastSquaresLossFunctionBDT

This loss function implements LossFunctionBDT and defines the appropriate behavior for
the Least Squares error metric.

Least Squares ≡ 1

2

N∑
i=1

[zi − ẑi]2 (9)

Taking a derivative with respect to the ith predicted value yields the residual. Setting ẑ
to a constant for all i and taking a derivative with repect to ẑ yields the constant of best fit,
the mean of the residuals.

class LeastSquaresLossFunctionBDT

Init(events) # set initial predictions to the mean

mean = Fit(events)

for(event in events)

event.predictedValue+=mean

SetTargets(events)

for(event in events)

event.target = Target(event)

Target(event) # residual

return event.trueValue - event.predictedValue

Fit(events) # mean

mean = 0

for(event in events)

mean+=event.trueValue-event.predictedValue

mean=mean/events.size()

return mean;

2.6.3 AbsoluteDeviationLossFunctionBDT

This loss function implements LossFunctionBDT and defines the appropriate behavior for
the Absolute Deviation error metric.

Absolute Deviation ≡
N∑
i=1

|zi − ẑi| (10)

11

Taking a derivative with respect to the ith predicted value yields +1 for z > ẑ and -1 for
z < ẑ. Setting ẑ to a constant for all i and taking a derivative with repect to ẑ yields the
constant of best fit, the median of the residuals.

class AbsoluteDeviationLossFunctionBDT

Init(events) # set initial predictions to the median

median = Fit(events)

for(event in events)

event.predictedValue+=median

SetTargets(events)

for(event in events)

event.target = Target(event)

Target(event) # sign of residual

return sign(event.trueValue - event.predictedValue)

Fit(events) # median

for(event in events)

residuals.add(event.trueValue-event.predictedValue)

return median(residuals);

2.6.4 HuberLossFunctionBDT

This loss function implements LossFunctionBDT with the appropriate behavior for the Huber
error metric. Huber has one parameter, the quantile defining the cutoff residual, δ. The
quantile parameter and the distribution of the events’ residuals determine δ. For a quantile
of 0.7, δ would be |z − ẑ| where 70% have a |z − ẑ| value less than or equal to δ.

Huber ≡
N∑
i=1

f(zi, ẑi; δ) (11)

f(z, ẑ; δ) =

{
1
2
(z − ẑ)2 |z − ẑ| ≤ δ
δ|z − ẑ| − 1

2
δ2 otherwise

Taking a derivative with respect to the ith predicted value yields sign(z− ẑ)min(|z− ẑ|,δ).
Setting ẑ to a constant for all i and taking a derivative with repect to ẑ yields the constant of
best fit, the shifted median. The shifted median is between the mean and the median. The
exact form is shown in the code below. As the quantile of the cutoff goes to 100% the shifted
median approaches the mean. As the quantile goes to 0% the shifted median approaches the
median. So Huber can be tought of as a mixture of Least Squares and Absolute Deviation,
where the quantile determines the mixing.

class HuberLossFunctionBDT

12

fQuantile # set by user

fResidualCutoff # delta

Init(events) # set initial predictions to the shifted_median

shifted_median = Fit(events)

for(event in events)

event.predictedValue+=shifted_median

SetTargets(events)

for(event in events)

event.target = Target(event)

Target(event) # the least extreme b/w the cutoff and the residual

residual = event.trueValue - event.predictedValue

return sign(residual)*min(fResidualCutoff, abs(residual))

Fit(events) # shifted_median

residualMedian = getResidualMedian(events)

shift = 0

for(event in events)

residual = event.trueValue - event.predictedValue

diff = residual-residualMedian

shift will be average of differences from median

except that we discount diff to the residual cutoff

if it is too large.

shift+=1/events.size()*sign(diff)*min(fResidualCutoff,abs(diff))

return (residualMedian + shift)

3 Conclusion

The End.

References

[1] Friedman, Jerome H. Greedy Function Approximation: A Gradient Boost-
ing Machine. The Annals of Statistics, vol. 29, no. 5, 2001, pp. 11891232.
www.jstor.org/stable/2699986.

[2] Trevor Hastie, Robert Tibshirani, Jerome Friedman. The Elements of
Statistical Learning: Data Mining, Inference, and Prediction. 2009.
https://statweb.stanford.edu/ tibs/ElemStatLearn/

13

	Introduction
	Boosted Decision Trees
	A Single Decision Tree
	Building a Single Decision Tree: an Example
	The Decision Tree Algorithm
	Boosting
	The BDT Algorithm
	Some Loss Functions
	LossFunctionBDT
	LeastSquaresLossFunctionBDT
	AbsoluteDeviationLossFunctionBDT
	HuberLossFunctionBDT

	Conclusion

